

GEOTECHNICAL INVESTIGATION Lot 126, Murphy Street

Submitted to: Lindsay & Robyn Partridge c/- Charles Wright Architects Pty Ltd PO Box 492 Port Douglas QLD 4877

Report Number.

1 Copy - Charles Wright Architects Pty Ltd

Distribution:

137632049-001-R-Rev1

Table of Contents

1.0	INTRO	DUCTION	1
2.0	REGIO	NAL GEOLOGY	1
3.0	FIELDV	VORK	1
	3.1	Methods	1
	3.2	Site Overview	2
	3.3	Subsurface Conditions	2
4.0	LABOR	ATORY TESTING	2
5.0	ENGIN	EERING COMMENTS	3
	5.1	Preliminary Stability Analyses	3
	5.2	Site Landslide Risk Assessment	4
	5.3	Drainage	7
	5.4	Uncontrolled Fill	7
	5.5	Site Preparation and Earthworks	7
	5.6	Footings and Site Classification	8
	5.6.1	Shallow Footings	8
	5.6.2	Deep Footings	8
	5.6.3	Site Classification	9
	5.7	Retaining Walls	9
6.0	LIMITA	TIONS 1	0

FIGURES

Figure 1 : Test Pit Locations Plan

Figure 2: Cross Section A

APPENDIX A Results of Field Investigation

APPENDIX B Laboratory Test Results

APPENDIX C Results of Stability Analysis

APPENDIX D Good Hillside Practice (AGS)

APPENDIX E Limitations

1.0 INTRODUCTION

At the request of Charles Wright Architects (CWA), Golder Associates (Golder) has undertaken a geotechnical investigation for a proposed residence at Lot 126 Murphy Street, Port Douglas. The investigation has been conducted in general accordance with our proposal (Golder Reference P37632116-001-P-Rev0) dated 13 March 2013.

The aim of the investigation was to assess geotechnical and groundwater conditions at the site of the proposed development and to provide the following information:

- Subsurface conditions at the site;
- Stability of the slopes following proposed development and comments on slope stabilisation, if necessary;
- To assess the risk of upslope hazards, including the potential for rockfall and debris flows;
- Comments on foundation options and provide geotechnical design parameters;
- To provide a site classification as per AS2870.

This report presents the results of the geotechnical investigation together with preliminary geotechnical input related to the items outlined above. As final details related to the proposed foundation types and structural loads are not known at this time, all geotechnical comments provided in this report should be considered preliminary in nature and should be reviewed and, if necessary, revised once the final design details are available. This report is based on drawings provided to Golder by CWA and geotechnical investigation and laboratory testing undertaken by Golder.

This report provides supersedes document 137632049-001 Rev0 issued on April 2013.

2.0 **REGIONAL GEOLOGY**

The Queensland Department of Natural Resources and Mines 1:250 000 Geological Map Mossman, Sheet SE 55-1, indicates that the site is underlain by the late Silurian / Devonian Hodgkinson Formation dominated by arenite rich conglomerates.

Subsurface conditions encountered in the test pits are considered to be consistent with the materials indicated on the geological map.

3.0 FIELDWORK

3.1 Methods

The field investigation was carried out on 19 March 2013 under the full time supervision of a geotechnical engineer from Golder. The fieldwork consisted:

- Site walkover of the site;
- Excavation of two test pits (TP1 and TP2) to a maximum depth of 3.0 m.
- Observation and logging of two cuttings where the soil / rock profile is exposed;
- Performance of a dynamic Cone Penetrometer (DCP) test adjacent to test pit 1 (TP1/ DCP1) and near to the crest of an existing cut batter (DCP2).

The approximate test pit locations are indicated on Figure 1. Ground surface levels were interpolated from contour information presented on the RPS Contour and Detail Surveying drawing (115859-1) dated 26 November 2012 provided by CWA.

3.2 Site Overview

The site slopes down to the southwest at approximately 25 degrees. At the time of investigation, it was undeveloped and predominately covered by dense rainforest vegetation. A near-level platform towards the centre of the Lot has been formed between an old rock retaining wall and a low cut batter where weathered bedrock is exposed. Disused concrete steps are located north of the platform, and an open concrete drain runs along the northeast lot boundary. A second low cutting exposing weathered bedrock is located at the south corner of the Lot near the end of the concrete driveway. Site drainage is toward the west corner.

3.3 Subsurface Conditions

General sub soil conditions comprise localised uncontrolled fill overlying natural topsoil, colluvium and weathered bedrock. The fill deposits are associated with the near-level bench near the centre of the Lot, with minor deposits noted along the western property boundary. The colluvium appears to thicken toward the southwest portion of the Lot. The thickness of colluvium and residual soils was noted to a depth of 2.9 m below ground level in Test Pit 1 before grading to low strength rock. The approximate limits of the uncontrolled fill and the thickened colluvium are illustrated on Figures 1 and 2. Detailed descriptions of the subsurface conditions at investigation locations are presented on the Test Pit Reports in Appendix A.

The conditions encountered were generally as follows:

- GL to 0.4/1.9m Topsoil: very loose to loose silty Sand.
- 1.9 to 2.9 m Colluvium / Residual soil: very dense silty clayey Sand.
- Deeper than 0.4/2.9 Extremely weathered to highly weathered rock (phyllite), extremely low to low and low to medium strength

Groundwater was not encountered in the test pits to the depths advanced at the time of investigation. It should be noted that groundwater levels may fluctuate seasonally and during heavy rainfall periods.

4.0 LABORATORY TESTING

Laboratory plasticity and particle distribution tests were carried out on samples of the soils encountered to confirm field classifications. Laboratory test result sheets are presented in Appendix B and are summarised in Table 1 below.

ID	Depth	Material	Emerson Class	Grading (%)		Plasticity	y (%)
	(m)	inatorial	Number	Gravel	Sand	Fines	LL	PI
TP1	0.6-0.9	Silty CLAY	8	7	43	50	41	8
TP1	1.3-1.6	Silty CLAY	5	8	42	50	31	6

Table 1: Summary of Laboratory Testing

LL denotes Liquid Limit, PI denotes Plasticity Index.

Due to the nature of the materials encountered on site, undisturbed samples for shrink/swell testing could not be recovered.

5.0 ENGINEERING COMMENTS

5.1 Preliminary Stability Analyses

Stability analyses were carried out for the site profile indicated on Figure 2 for the existing slope profile. Based on judgement and previous experience with similar materials, the following strength parameters were adopted for the stability analyses:

Material Type	Strength Parameters		
Fill	c' = 3 kPa	φ' = 28°	
Top Soil	c' = 2 kPa	φ' = 28°	
Colluvium	c' = 3 kPa	φ' = 28°	
Residual soils	c' = 5 kPa	φ' = 30°	
Inferred Weathered Rock	c' = 8 kPa	φ' = 34°	

Table 2: Strength Parameters for Slope Stability Analyses

Analyses were performed for what were considered to be dry or "normal" conditions and for what were considered to be wet or "extreme" conditions. Dry/ "normal" conditions are considered to represent usual dry season climatic conditions. Wet/ "extreme" conditions are considered to represent adverse wet season climatic conditions, but with standard engineering controls such as effective surface and subsurface drainage, drainage behind retaining walls, etc. A pore water pressure co-efficient, R_u = 0.2 was used to simulate seepage/water infiltration for "extreme" conditions within the soils and R_u = 0.1 within weathered rock zones respectively. The analyses were carried out for a potential failure surfaces using the proprietary computer software SLOPE/W.

The results of the stability analyses are presented in Appendix C and are summarised as follows:

Clana	Drafila	Calculated Factor of Safety (FOS)		
Slope	Profile	Dry Conditions	Wet Conditions	
lingiana	Existing	1.9	1.7	
Upslope	Proposed	1.7	1.6	
Middle	Existing	1.2	1.0	
Platform	Proposed	1.2	1.0	
Downolono	Existing	2.3	2.0	
Downslope	Proposed	2.3	2.0	

Table 3: Results of Stability Analyses

For the purposes of assessing stability at this site we consider that a factor of safety \geq 1.5 should be achieved for the dry conditions modelled and that a factor of safety \geq 1.3 should be achieved for the wet, "extreme" conditions modelled.

The results of the stability analyses indicate that the profile at the location of section A-A has adequate factors of safety for the upslope and downslope conditions modelled. The uncontrolled fill deposit in the middle platform at the location of section A-A is marginally stable under dry conditions and may be unstable under wet conditions for the condition modelled. Please refer to Section 5.4 for discussion of uncontrolled fill.

As is the case for all developments involving cut/fill earthworks in the Cairns area, some minor instability should be expected on batter faces. This instability is expected to be in the form of relatively minor slips and slumps on locally steep slopes or unsupported batters, and to occur during or after prolonged periods of heavy rainfall. Some 'ravelling' may be anticipated in the rock batters. Given the low risk to residential development, this instability is generally accepted in the Cairns area and must be accepted by all parties involved in the proposed development.

5.2 Site Landslide Risk Assessment

The risk assessment procedure adopted herein is in general accordance with AGS 2007c¹. The AGS Guidelines outline an approach that includes a qualitative risk assessment for risk to property. Implementing the control measures to reduce risk to property will result in an environment with a negligible risk to persons from landslides.

The Qualitative Level of Risk to Property resulting in landslide event is based on a measure of the likelihood of occurrence (

Therefore, from a geotechnical perspective and based on results of preliminary site assessment, there should be no significant implications or difficulties associated with the construction of an engineer-designed development on the proposed lot.

Table 4) combined with the consequence to property (Table 5). Likelihood and consequence are combined in Table 6, resulting in risk level that can range from very low (VL) to very high (VH). The standard definition of the risk levels are presented in Table 7.

The results of the risk to property assessment for each proposed allotment before and after engineering controls are presented in Table 8.

Subject to standard engineering practices described in Table 8, "Good Hillside Practices" (Appendix D, taken from AGS 2007c), and the recommendations contained in this report are adopted, we consider that proposed development on the allotment will have a Low Risk of instability. The risk from upslope hazards including rock fall, slips and debris slides is considered to be Low. This level of risk would normally be considered to be acceptable to local authorities and owners for hillside development.

Therefore, from a geotechnical perspective and based on results of preliminary site assessment, there should be no significant implications or difficulties associated with the construction of an engineer-designed development on the proposed lot.

Level	Descriptor	Description	Approximate Annual Probability
А	ALMOST CERTAIN	The event is expected to occur over the design life	10 ⁻¹
В	LIKELY	The event will probably occur under adverse conditions over the design life	10 ⁻²
С	POSSIBLE	The event could occur under adverse conditions over the design life	10 ⁻³
D	UNLIKELY	The event might occur under very adverse circumstances over the design life	10 ⁻⁴
E	RARE	The event is conceivable but only under exceptional circumstances over the design life	10 ⁻⁵
F	BARELY CREDIBLE	The event is inconceivable or fanciful over the design life	10 ⁻⁶

Table 4: Qualitative Measures of Likelihood

¹Practice Note Guidelines for Landslide Risk Management 2007, Australian Geomechanics Journal Volume 42 No. 1 March 2007, Australian Geomechanics Society (AGS)

LOT 126, MURPHY STREET

Level	Descriptor	Description
1	CATASTROPHIC	Structure(s) completely destroyed and/or large scale damage requiring major engineering works for stabilisation. Could cause at least one adjacent property major consequence damage.
2	MAJOR	Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant stabilisation works. Could cause at least one adjacent property medium consequence damage.
3	MEDIUM	Moderate damage to some of structure, and/or significant part of site requiring large stabilisation works. Could cause at least one property minor consequence damage.
4	MINOR	Limited damage to part of structure, and/or part of site requiring reinstatement stabilisation works.
5	INSIGNIFICANT	Little damage.

Table 5: Qualitative Measures of Consequences To Property

Table 6: Qualitative Risk Analysis Matrix

Likeliho	od	Consequence to Property						
Approx. Annual Probability		1: Catastrophic	2: Major	3: Medium	4: Minor	5: Insignificant		
A – Almost Certain	10 ⁻¹	VH	VH	VH	Н	M / L		
B - Likely	10 ⁻²	VH	VH	Н	М	L		
C - Possible	10 ⁻³	VH	Н	М	М	L		
D - Unlikely	10 ⁻⁴	Н	М	L	L	VL		
E - Rare	10 ⁻⁵	М	L	L	VL	VL		
F - Barely Credible	10 ⁻⁶	L	VL	VL	VL	VL		

Table 7: Risk Level Implications

Risk	k Level	Example Implications
VH	Very High	Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low; may be too expensive and not practical. Work will likely cost more than the value of the property
н	High	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to Low. Work would cost a substantial sum in relation to the value of the property.
М	Moderate	May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and implementation of treatment options to reduce risk to Low.
L	Low	Usually acceptable to regulators. Where treatment has been required to reduce the risk to this level, ongoing maintenance is required.
VL	Very Low	Acceptable. Manage by normal slope maintenance procedures.

		Without En	ngineering Co	•		With	Engineering Co	ntrols
Potential Hazard	Elements at Risk	Consequence	Likelihood of Occurrence	Qualitative Risk	Engineering Controls to Reduce Risk	Consequence	Likelihood of Occurrence	Qualitative Risk
Landslide in soil slope impacting building from above	Elements in Lot 126	Medium	Possible	Moderate	Limit cut/fill heights, and batter to appropriate angles or provide positive retention/support. Provision for good drainage and erosion control measures i.e. surface water interceptor drains and flow spreaders. Found all footings into rock.	Medium	Rare (Dry conditions) to Unlikely (Wet conditions)	Low
Landslide in soil slope undermining buildings	Elements in Lot 126	Medium	Unlikely	Low	Limit cut/fill heights, and batter to appropriate angles or provide positive retention/support. Provision for good drainage and erosion control measures i.e. surface water interceptor drains and flow spreaders. Found all footings into rock.	Medium	Rare (Dry conditions) to Unlikely (Wet conditions)	Low
Earth slides in existing uncontrolled fill batters	Elements in Lot 126	Medium	Possible	Moderate	Remove uncontrolled fill to fill height not more than 0.5 m height.	Medium	Rare (Dry conditions) to Unlikely (Wet conditions)	Low
Earth slides in existing fill batters	Access Driveway in Lot 126	Minor	Possible	Moderate	Maintain vegetation on batters/vegetate bare areas. Prevent surface water discharging directly over batters. Water run-off from collected and discharged in a controlled manner	Medium	Rare (Dry conditions) to Unlikely (Wet conditions)	Low
Earth slides in existing cut batters	Access Driveway in Lot 126	Insignificant	Possible	Low	Trim batters to remove erosion channels and undercutting of topsoils/vegetation Revegetate batters Crest drain	Insignificant	Possible	Low
Earth slide in future cut batters	Property (Future Roads, Houses and Other Structures)	Medium	Likely	High	Minimise cut slope heights to less than 1.5 m. Maximum cut batter angle of 1V:1H Adopt stable batter slopes or provide positive retention. Provision of good drainage and erosion control measures. Surface loads not to surcharge crests of cut batters.	Minor	Unlikely (Wet conditions)	Low
Earth slides in future fill batters.	Property (Future Roads, Houses and Other Structures)	Medium	Likely	High	Minimise batter slope heights to less than 1 m. Maximum fill batter angle 1V:1H Ensure adequate fill compaction (engineered fill). Ensure fill batters are keyed into natural ground. Adopt stable batter slopes or provide positive retention. Provision of good drainage and erosion control measures. Surface loads not to surcharge fill crests.	Minor	Unlikely (Wet conditions)	Low

Table 8: Results of Qualitative Assessment of Risk to Property

5.3 Drainage

It is recommended that the existing upslope cut-off drain is maintained (and improved if necessary) to help reduce the amount of surface and subsurface flow through and across the site. The discharge from this drain should be controlled and not allowed to flow across the site surface.

All stormwater from rooftops or paved areas should be collected and directed away from the site via pipes or lined drains rather than be allowed to flow across the site and down the slope.

5.4 Uncontrolled Fill

In the absence of an engineer's certification, existing fill is considered to be uncontrolled.

The uncontrolled fill is localised with relatively minor volumes. The uncontrolled fill is not considered suitable to support structural loads, and the uncontrolled fill has been shown to be marginally stable. It is our understanding that the residential footings are planned to be extended into rock. In addition, it is anticipated that much of the fill will be removed as a result of footing and retaining wall excavation, therefore the uncontrolled fill is not deemed to be detrimental to stability of the residence.

All excavations should be inspected by Golder to confirm that the conditions exposed are consistent with the assumptions on which our design guidelines are made.

All landscape structures including driveways, garden walls, footpaths, etc. should likewise be founded in natural soil/rock beneath the uncontrolled fill, or on engineered fill.

5.5 Site Preparation and Earthworks

It is anticipated that the natural soils and fill at the site should be able to be excavated using "normal" capacity hydraulic earthmoving equipment, while excavation below the level where weathered rock was encountered may require hydraulic rock breaker equipment if excavation is required.

Excavated materials are likely to comprise residual, (silty-sandy clay) soils and small amounts of fill material on the driveway. Some cobbles and boulders may also be encountered.

Should filling be required, site preparation should include the following:

- Removal of vegetation, and stripping of topsoil and soil containing signification amounts of organic material from the footprint of the proposed fill. Earthworks should be conducted with particular attention to trees, if any, that may be considered environmentally significant. Local depressions left by the removal of root boles may need to be filled and these should be backfilled with engineered fill, compacted in layers.
- Excavate and remove uncontrolled fill, where encountered.
- Compact subgrade areas with a heavy roller to reveal soft or loose zones. Soft or loose materials that cannot be improved by compaction should be removed and replaced with engineered fill, or excavated down to rock.
- Fill where required should be placed in layer not exceeding 200 mm loose thickness and compact to the recommended level prior to placing the next layer.

The recommended compaction level is a density ratio of at least 95% using Standard Compaction. If required, additional imported fill materials should preferably have a CBR value greater than 15% and a Plasticity Index of less than 10.

Earthworks should be undertaken in accordance with AS 3798-20011 "*Guidelines on Earthworks for Commercial and Residential Developments*". It is recommended the Earthworks should be supervised by a suitably qualified person and all filling should be checked by field density testing.

LOT 126, MURPHY STREET

Cuts should be limited to not more than 1.5 m deep, and new fill up to a maximum height of 1 m. Cuts/ fills should be supported by engineered retaining walls or battered to a stable angle. A batter slope of no steeper than 1V:1H is recommended for cuts and fills. Where deeper cuts/ higher fills are proposed, they should be assessed on an individual basis.

Unvegetated areas, or areas stripped to temporarily allow construction, should be revegetated (or otherwise protected from erosion) as soon as possible following construction to maintain the slope instability risk level for the site. Temporary erosion protection and drainage to divert surface runoff away from areas of the site stripped/exposed as part of construction should be considered to reduce the risk of erosion and subsequent instability.

5.6 Footings and Site Classification

Footing design and structural loading for the proposed development have not been reviewed as part of the scope of this report. All geotechnical comments provided in this report should be considered preliminary in nature and should be reviewed and, if necessary, revised once the final design details are available.

All footing excavations should be inspected by Golder to confirm the ground conditions are consistent with those on which these design guidelines are based.

5.6.1 Shallow Footings

Pad and strip footings for the residence supporting vertical loads should be founded at least 0.5 m into low strength (or better) rock based on the parameters in Table 9. Footings for ancillary structures should where possible be founded in bedrock, but may be sized using the parameters presented in the table below. Despite no water table being observed in any test pit, a worst case scenario of the water table being located at the base of the footing has been assumed for this analysis. Design parameters are based on footing excavations being level, clean, dry and free of loose, softened and disturbed materials at the time of pouring concrete.

Allowable bearing pressures and geotechnical design parameters for shallow footings are shown in Table 4.

Founding Strata	Unit Weight (Ƴ)	Friction Angle (φ)	Modulus (E)	Allowable Bearing Pressure (Vertical)
Dense to very dense silty Sand	18 kN/m ³	35 °	15 to 20 MPa	120 kPa
Medium dense to dense silty Sand	18 kN/m ³	30°	10 to 15 MPa	80 kPa
Engineered fill	18 kN/m ³	30°	10 to 20 MPa	100 kPa
Very low strength extremely weathered rock	22 kN/m ³	34 °	100 MPa	600 kPa

Table 9: Design Parameters for Shallow Footings

5.6.2 Deep Footings

If structure loads cannot be economically supported on high level footings, bored cast *in situ* piles could be considered. Piled footings should penetrate through the residual soil / colluvium and should extend at least three times their diameter into the weathered rock. Design of piles should be in accordance with Australian Standard AS2159-1995 "*Piling – Design and installation*". Preliminary assessment of pile sizes and founding levels using static analyses could be based on the parameters presented in Table 10. For limit state strength design, a geotechnical strength reduction factor of 0.5 applied to the ultimate pressures is suggested. Selection of a design value for base capacity should consider materials four pile diameters below base level.

Table 10: Parameters for Bored Cast in Situ Piles							
Material	Allowable End Bearing (kPa)	Allowable Shaft Adhesion (kPa)					
Dense to very dense silty Sand	-	-					
Medium dense to dense silty Sand	-	-					
Very low strength extremely weathered rock	600	50					

Table 10. Parameters for Bored Cast In Situ Piles

Note: Shaft adhesion and end bearing capacities in Table 5 apply when the pile length (L) is greater than 4 times the pile diameter (d). If L/d<4, use parameters for shallow footings. Design end bearing should consider material capacity within 4 pile diameters below founding level.

Bored pile settlements will depend on footing shape, applied load and pile "cleanliness" on casting concrete, and should be assessed once these characteristics are known. As a preliminary guide, footing settlements under static serviceability loads would not be expected to exceed about 1.5% of pile diameter for properly constructed bored piles using allowable bearing pressures presented in Table 10. Parameters are based on foundation excavations being clean, dry and free of loose, softened and disturbed materials at the time of pouring concrete.

It is recommended that bored pile drilling be observed by a geotechnical engineer to confirm ground conditions present and that geotechnical capacity meets the design loads.

5.6.3 Site Classification

In accordance with AS2870-1996 'Residential slabs and footings - Construction', the site is classified as "Class P" due to uncontrolled fill and steep slopes. Footings should be designed in accordance with the parameters outlined above.

Based on site reactivity (shrink-swell potential) only, the soil profile behaviour would be equivalent to a site with an "S" site classification.

It is recommended that footing excavations be inspected by Golder to confirm that founding conditions are consistent with those on which the design guidelines are based. Footing inspections should be scheduled prior to installation of reinforcing steel.

5.7 **Retaining Walls**

For permanent retaining structures, drainage should be provided behind all retaining structures to help prevent the development of water pressures on the back of the walls. In addition, the drainage will need to be maintained throughout the life of the structure. If the designer is not satisfied that maintenance will be undertaken and the integrity of drainage maintained, then the retaining structure design should allow for the development of water pressures.

Footings for retaining wall structures should be founded in rock or at least 0.5 m into the medium dense to dense or dense to very dense silty sands, the parameters presented in Table 9 should be used for design, along with the earth pressure coefficients presented in Table 11.

Material	Active Earth Pressure Coefficient (k _a)	At Rest Earth Pressure Coefficient (k _o)	Passive Earth Pressure Coefficient (k _o)	Unit Weight (kN/m³)
Engineered fill / Colluvium	0.3*	0.47	3.0	18
Very Low and Low Strength Weathered Rock	0.3	0.5	-	22

Table 11: Geotechnical Design Parameters for Retaining Walls

* Assumes horizontal backfill behind wall

LOT 126, MURPHY STREET

Bearing pressures presented in Table 9 reduced by one-third for inclined resultant forces from lateral pressures could be used to size retaining wall footings.

All retaining wall excavations should be inspected by Golder to confirm the ground conditions are consistent with those on which these design guidelines are based.

6.0 LIMITATIONS

Your attention is drawn to the document – "Limitations", which is included in the appendices of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder Associates, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing. We would be pleased to answer any questions about this important information from the reader of this report.

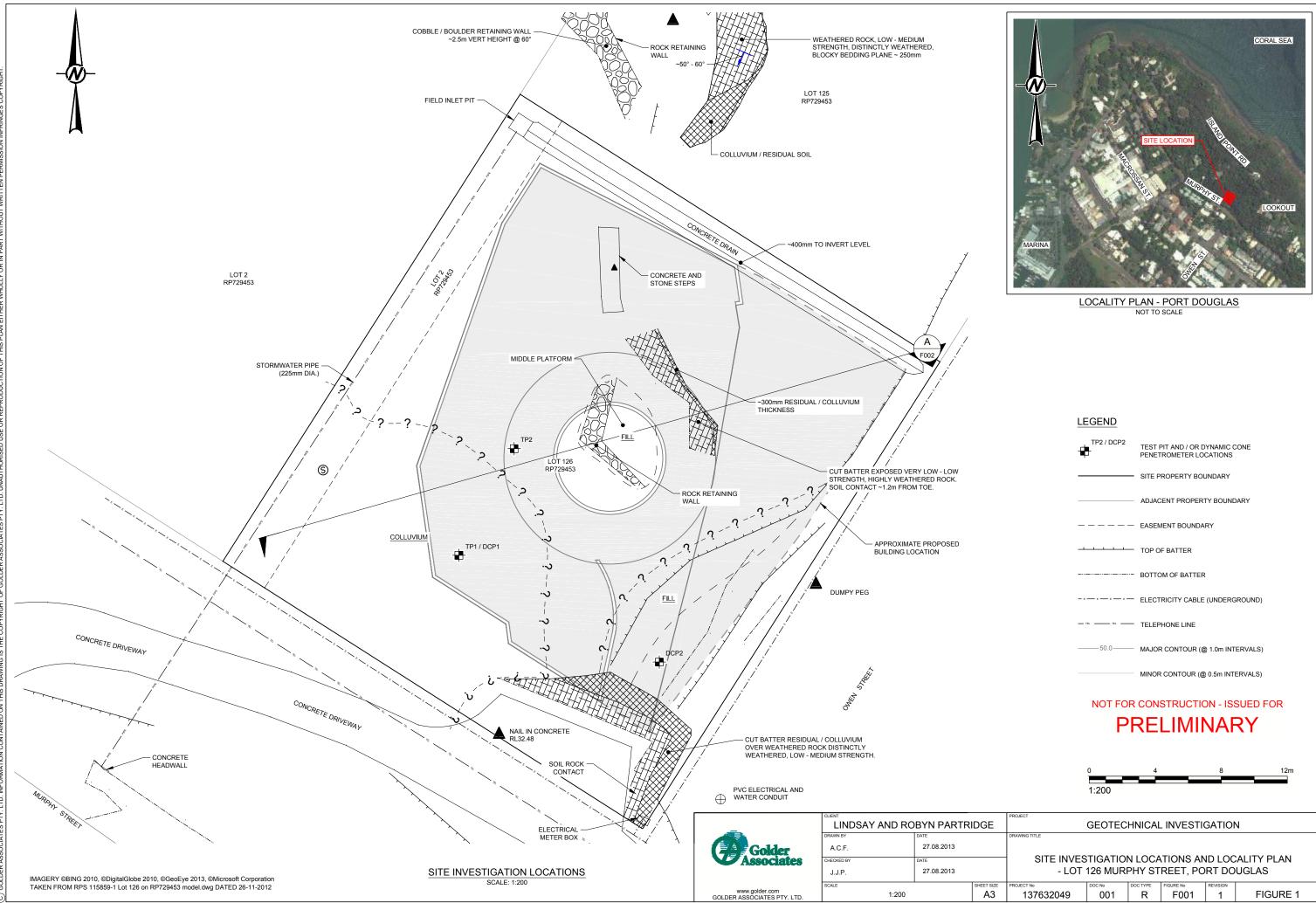
GOLDER ASSOCIATES PTY LTD

TANK,

Gaozhao Lu Geotechnical Engineer

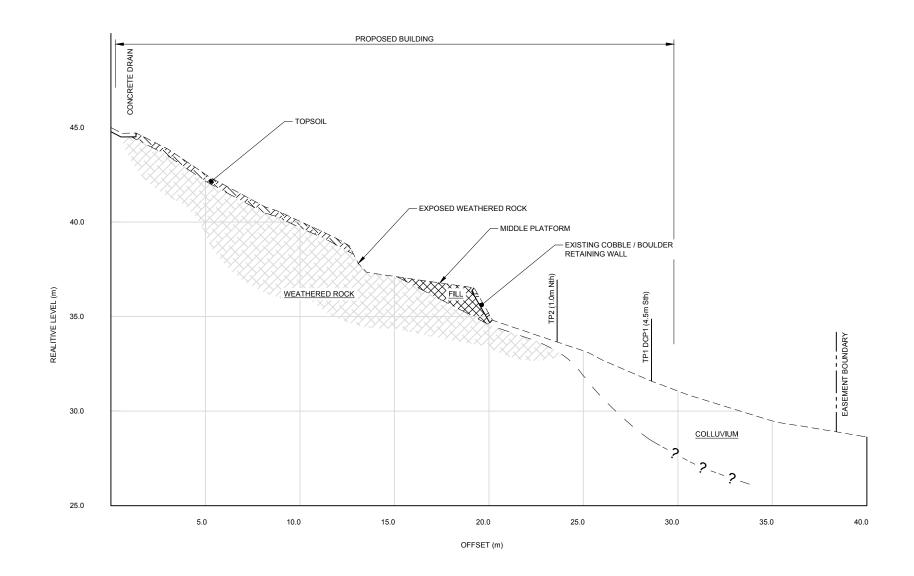
R. Jacoh

Russell Jacobsen Senior Geotechnical Engineer, RPEQ


GZL/JJP/JD/dh

A.B.N. 64 006 107 857

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.


j:\geo\2013\137632049 - cwa - geo invest - lot 126 murphy street, port douglas\corr out\137632049-001-r-rev1.docx

/L Plot Date: 27 August 2013 Time:1:30:01 PM By: Farlow, Alan Path: K:\GEO\2013\137632049- CWA - Geo Invest - Lot 126 Murphy Street, Port Douglas\FIGURES - File Name:137632049-001-R-F001-F002-Rev0.dwg Xref: GAP_LOGO-A3.dwg; 137632049-XREF-Existing Site Features.dwg; 137632049-XREF-EG Survey.dwg; A201_R3.jpg; BING IMAGE.JPG;

PROJECT														
GEOTECHNICAL INVESTIGATION														
	020120				•									
DRAWING TITLE														
SITE INVES	TIGATIO	N LOCA	TIONS AN	ID LOC	ALITY PLAN									
- LOT	126 MURI	PHYSI	REET, PO	RIDO	UGLAS									
PROJECT No	DOC No	DOC TYPE	FIGURE No	REVISION										
137632049	001	R	F001	1	FIGURE 1									
107 002040	001		1001		HOURE I									

					0 1:200	4		8	12m
_		D ROBYN PARTR	IDGE	PROJECT	GEOTEC	HNICAL		GATION	N
Golder	A.C.F.	DATE 27.08.2013		DRAWING TITLE					
Associates	CHECKED BY	DATE 27.08.2013			126 MUR		TION A REET, PO		
	J.J.P. SCALE	27.00.2013	SHEET SIZE	PROJECT No		DOC TYPE	FIGURE No	REVISION	UGLAS
www.golder.com DER ASSOCIATES PTY. LTD.	1	:200	A3	137632049	001	R	F002	1	FIGURE 2

0

NOT FOR CONSTRUCTION - ISSUED FOR PRELIMINARY

APPENDIX A Results of Field Investigation

CLIENT: L & R Partridg PROJECT: 126 Murphy S LOCATION: Port Douglas	e	SUF	SITION: RFACE RL: DATUM: AHD DEPTH: 3.00 m		MACH CONT	T: 1 OF 1 HINE: Hyundai 5.5-9 RACTOR: Heath's Backhoe Hire SED: JJP DATE: 19/3/1
JOB NO: 137632049		BUC	CKET TYPE: 450mm Toothed		CHEC	CKED: DH DATE: 26/3/1
Excavation	Sampling		Field Material Desc			
METHOU EEXCAVATION WATER WATER (metres) Hadd	SAMPLE OR FIELD TEST OUT OUT OUT OUT OUT OUT OUT OUT OUT OU	LOG USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
L 1.0 1.0 1.0 1.0 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.90 2.0 1.90	BDS 0.60-0.90 m	SM SM SM	TOPSOIL: Silty SAND fine to medium grained, dark grey brown, trace clay, with some rootlets, trace fine to medium grained gravel trace rootlets trace rootlets COLLUVIUM: Silty SAND fine to medium grained, dark grey brown, increased low to medium grained, dark grey brown, increased low to medium plasticity clay, with some cobbles (<15mm)	м	VL - L MD	NATURAL
			WEATHERED ROCK phyllite, quartzite abundant, orange brown with pale grey brown, extremely weathered to highly weathered, extremely low to very low strength TEST PIT DISCONTINUED @ 3.00 m TARGET DEPTH GROUNDWATER NOT ENCOUNTERED			

PI L(LIENT	Γ: CT: ΊΟΝ:	L&R	Partridge urphy Str ouglas				suf Pit	REPC SITION: RFACE RL: DATUM: AHD DEPTH: 1.30 m CKET TYPE: 450mm Toothed		Shee Maci Con ⁻ Logo	DF TEST PIT: TP2 T: 1 OF 1 HINE: Hyundai 5.5-9 IRACTOR: Heath's Backhoe Hire GED: JJP DATE: 19/3/13 CKED: DH DATE: 26/3/13
		Exca	vation		Sampling				Field Material Desc			
METHOD	EXCAVATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 — - -	0.40			× · · · · · · · · · · · · · · · · · · ·	SM	TOPSOIL: Silty SAND fine to medium grained, dark grey brown, with some rootlets, trace low plasticity clay, trace fine to medium grained gravel	м	L	NATURAL
EX	L		0.5 — - - -	-					WEATHERED ROCK orange brown with pale grey, phyllite, quartzite abundant, distinctly weathered, low to medium strength			Excavates as blocky/tabular gravel cobble (<250mm)
	м		1.0— - -	-				-	TEST PIT DISCONTINUED @ 1.30 m			
			- 1.5 - - - 2.0 -						TARGET DEPTH GROUNDWATER NOT ENCOUNTERED			-
013 13:48 8.2.856			- - - 2.5 — -									-
6.GPJ < <drawingfile>> 09/04/2</drawingfile>			- 3.0 — - -									-
0040_PORT_DOUGLAS-LO1_12												-
GAP 8_05J LIB.GLB Log_GAP NON-CORED FULL PAGE_127632049_PORT_DOUGLAS-LOT_126.GPJ < <drawingfile>> 09/04/2013 13:48_0.</drawingfile>			4.0 — - - 4.5 —									
6AP 8_05J LIB.GLB Log GA			- - 5.0 —	geote	echnical purposes on	ly, w	/ithout	atten	conjunction with accompanying notes and abbreviations. I npt to assess possible contamination. Any references to po ssarily indicate the presence or absence of soil or groundw	tentia	al cont	tamination are for

Golder		REPORT OF DCP TESTS
CLIENT: L & R Partridge		SHEET: 1 OF 1
PROJECT: 126 Murphy Street LOCATION: Port Douglas JOB NO: 137632049		CHECKED: DH DATE: 26/3/13
TESTED: JJP DATE: 18/03/2013 TEST: DCP1 POSITION: COORDS: MGA94 56 SURFACE RL: DATUM: AHD	TESTED: JJP DATE: 18/03/2013 TEST: DCP2 POSITION: COORDS: MGA94 56 SURFACE RL: DATUM: AHD	
(AS1289.6.3.2) Blows per 100 mm H (AS1289.6.3.2) B	(AS1289.6.3.2) Blows per 100 mm	
This report of penetrometer must geotechnical purposes only, witho information only and do n	be read in conjunction with accompanying notes and abbre ut attempt to assess possible contamination. Any reference not necessarily indicate the presence or absence of soil or g	viations. It has been prepared for s to potential contamination are for roundwater contamination. GAP gINT FN. F04a RL3

A Go	lder				-	BBREVIATIONS & TERM
Asso	lder ociates		05	ED ON E	BOREHOLE	AND TEST PIT REPORT
DRILLING/E	XCAVATION METHOD	I				
AS*	Auger Screwing	RD	Rotary blade or	drag bit	NQ	Diamond Core - 47 mm
ND*	Auger Drilling	RT	Rotary Tricone		NMLC	Diamond Core - 52 mm
	• •		•		-	
V	V-Bit	RAB	Rotary Air Blast		HQ	Diamond Core - 63 mm
Г	TC-Bit, e.g. ADT	RC	Reverse Circula	tion	HMLC	Diamond Core – 63mm
IA	Hand Auger	PT	Push Tube		BH	Tractor Mounted Backhoe
DH	Hollow Auger	СТ	Cable Tool Rig		EX	Tracked Hydraulic Excavator
TC	Diatube Coring	JET	Jetting		EE	Existing Excavation
/B	Washbore or Bailer		Non-destructive	diaging	HAND	Excavated by Hand Methods
	ON/EXCAVATION RES			ulgging	HAND	Excavated by Hand Methods
LL	ow resistance. Rapi	-	possible with little	effort from t	the equipment u	sed.
м	Medium resistance.	Excavation/po	ssible at an acce	ptable rate v	vith moderate ef	fort from the equipment used.
H Hig	h resistance to pe effort from the equipm		avation. Further p	enetration is	s possible at a sl	ow rate and requires significant
R		Refusal. No f	urther progress p	ossible withc	out the risk of da	mage or unacceptable wear to the
		nd are depend		ors including	g the equipment	power, weight, condition of
VATER						
¥	Water level at	date shown		\triangleleft	Partial water los	S
\triangleright	Water inflow				Complete water	loss
GROUNDWA DBSERVED			n of grou ndwater ge or cave in of th			as not poss ible due to dr illing wat
GROUNDWA ENCOUNTE	RED le		e strata. Inflow m			ver, groundwater could be present d the borehole/test pit been left op
SAMPLING	AND TESTING					
SPT	Standard	Penetration Te	est to AS1289.6.3	3.1-2004		
1,7,11 N= 1						owing 150mm seating
80/80mm					ation for that inte	erval are reported
RW			nder the rod weigh			
IW			ider the hammer	and rod weig	ght only	
ΗB	Hammer of	double bouncir	ng on anvil			
DS Disturb		sample				
3DS Bulk		rbed sample				
Gas Gas	Sam					
V Wa	ter Sa					
P			ver section noted			
1.					r strength (s _v = p	beak value, s _r = residual value)
	Photoioni	sation Detecto	r reading in ppm			
V	1 10001011					
FV PID	Pressurer		Section noted		ading in kPa	
FV PID PM	Pressurer			nstrument re		
ev PID PM PP	Pressurer Pocket pe	enetrometer tes	st expressed as in			r in millimetres
© РІD РМ РР J63	Pressurer Pocket pe Thin walle	enetrometer tes ed tube sample				r in millimetres
ev PID PM PP J63 VPT	Pressurer Pocket pe Thin walle Water pre	enetrometer tes ed tube sample essure tests	st expressed as in e - number indicat			r in millimetres
V РіD РР Ј63 VPT DCP	Pressurer Pocket pe Thin walle Water pre Dynamic	enetrometer tes ed tube sample essure tests cone penetrati	st expressed as in e - number indication on test			r in millimetres
V PID PP J63 VPT DCP CPT CPT	Pressurer Pocket pe Thin walle Water pre Dynamic Static con	enetrometer test ed tube sample essure tests cone penetration le penetration	st expressed as in e - number indicat on test test	tes nominal s	sample diameter	r in millimetres
V PID PM J63 VPT OCP CPT CPTu	Pressurer Pocket pe Thin walle Water pre Dynamic Static con	enetrometer tes ed tube sample ssure tests cone penetration le penetration le penetration	st expressed as in e - number indicat on test test test with pore pre	tes nominal s essure (u) me	sample diameter easurement	
V PID PM J63 VPT DCP CPT CPTu Ranking of V R = 0	Pressurer Pocket pe Thin walle Water pre Dynamic Static con Static con Visually Observable Co No visible evide	enetrometer tere ed tube sample ssure tests cone penetration le penetration ontamination ence of contamination	st expressed as in e - number indicat on test test test with pore pre and Odour (for s nination	tes nominal s essure (u) me specific soil c R = A	sample diameter easurement contamination as No non-natura	sessment projects) al odours identified
V PID PM J63 VPT DCP CPT CPTu Ranking of V	Pressurer Pocket pe Thin walle Water pre Dynamic of Static con Static con Static con Visually Observable Co No visible evide Slight evidence	enetrometer tere ed tube sample ssure tests cone penetration le penetration ontamination ence of contame of visible contame	st expressed as in e - number indicat on test test test with pore pre and Odour (for s nination	tes nominal s essure (u) me specific soil c	sample diameter easurement contamination as No non-natura Slight non-nat	sessment projects) al odours identified ural odours identified
V PID PM J63 VPT DCP CPT CPTu R = 0 R = 1 R = 2	Pressurer Pocket pe Thin walle Water pre Dynamic of Static con Static con Static con Visually Observable Co No visible evide Slight evidence Visible contami	enetrometer tere ed tube sample ssure tests cone penetration le penetration ontamination ence of contant of visible con- nation	st expressed as in e - number indicat on test test test with pore pre and Odour (for s nination tamination	tes nominal s essure (u) me specific soil c R = A	sample diameter contamination as No non-natura Slight non-nat Moderate non	sessment projects) al odours identified ural odours identified -natural odours identified
V PID PA P P P P P P P P T P T u R = 0 R = 1	Pressurer Pocket pe Thin walle Water pre Dynamic of Static con Static con Static con Visually Observable Co No visible evide Slight evidence	enetrometer tere ed tube sample ssure tests cone penetration le penetration ontamination ence of contant of visible con- nation	st expressed as in e - number indicat on test test test with pore pre and Odour (for s nination tamination	tes nominal s essure (u) me specific soil c R = A R = B	sample diameter contamination as No non-natura Slight non-nat Moderate non	sessment projects) al odours identified ural odours identified
V PID PM PP J63 VPT DCP CPT CPT R = 0 R = 1 R = 2 R = 3	Pressurer Pocket pe Thin walle Water pre Dynamic of Static con Static con Static con Visually Observable Co No visible evide Slight evidence Visible contami	enetrometer tere ed tube sample ssure tests cone penetration le penetration ontamination ence of contant of visible con- nation	st expressed as in e - number indicat on test test test with pore pre and Odour (for s nination tamination	tes nominal s essure (u) me specific soil c R = A R = B R = C	sample diameter contamination as No non-natura Slight non-nat Moderate non	sessment projects) al odours identified ural odours identified -natural odours identified
V PID PM P63 VPT PCP PTU R = 0 R = 1 R = 2 R = 3 COCK CORI TCR = Tot	Pressurer Pocket pe Thin walle Water pre Dynamic of Static con Static con Visually Observable Co No visible evide Slight evidence Visible contami Significant visib E RECOVERY al Core Recovery (%)	enetrometer tes ed tube sample ssure tests cone penetration e penetration ontamination ence of contamination of visible con- nation ble contamination	st expressed as in e - number indicat on test test test with pore pre and Odour (for s nination tamination	tes nominal s essure (u) me specific soil o R = A R = B R = C R = D	easurement contamination as No non-natura Slight non-nat Moderate non Strong non-na	al odours identified ural odours identified -natural odours identified atural odours identified atural odours identified
-V PID PM PP J63 WPT DCP CPT CPTU R = 0 R = 1 R = 2 R = 3 ROCK CORI TCR = Tot 	Pressurer Pocket pe Thin walle Water pre Dynamic of Static con Static con Visually Observable Co No visible evide Slight evidence Visible contami Significant visib	enetrometer tere det ube sample ssure tests cone penetration e penetration ontamination ence of contant of visible com nation ble contaminat	st expressed as in e - number indicat on test test test with pore pre and Odour (for s nination tamination ion	tes nominal s essure (u) me specific soil c R = A R = B R = C R = D ecovery (%) re recovered	easurement contamination as No non-natura Slight non-nat Moderate non Strong non-na	sessment projects) al odours identified ural odours identified -natural odours identified

	Golder ssociates	USEI		I E	ME [®] BOREH	-	-			-	RIPT EPOF	-
	FILL					CLAY	(CL, C	I or CH))			
	GRAVEL (GP or G	W)			<u>v vy</u> v	ORGA	NIC SO	DILS (C)L or ()H or P	t)	
	SAND (SP or SW)				000	COBB	LES or	BOULI	DERS			
× × × × × × × × ×	SILT (ML or MH)											
Combinatio	ons of these basic sy	mbols may be used	to indica	ate	mixed mate	rials suc	h as s	andy cla	ay.			
Soil and R	Rock is classified ai 1993, (Amdt1 – 19	FERRED STRATION nd described in Rep 94 and Amdt2 – 199	orts of	Во								
	Particle S	lize				Pla	sticity	Proper	ties			
Major Divi	ision Sub Division	Particle Size		40 -	r							
E	BOULDERS	> 200 mm								СН		
	COBBLES	63 to 200 mm		30 -	- 104	CL v plasticity		CI Medium	Hig	h plasticity clay		
	Coarse	20 to 63 mm	Plasticity Index (%)			clay		plasticity clay				
GRAVEL	Medium	6.0 to 20 mm	ude)	20 -					1			
	Fine	2.0 to 6.0 mm	ity	20 -						OH or High liqu	uid limit	
	Coarse	0.6 to 2.0 mm	astic							sil	t	
SAND	Medium	0.2 to 0.6 mm	ä	10 -			$ \land $	OL or ML Low liquid				
	Fine	0.075 to 0.2 mm			OL or ML - Low lic			limit silt				
	SILT	0.002 to 0.075 mm		0 -	10 10	20	30	40	50	60		80
	CLAY	< 0.002 mm		,	0 10	20		id Limit		00	70	00

MOISTURE CONDITION

Symbol	
D	

Term Description

Sands and gravels are free flowing. Clays & Silts may be brittle or friable and powdery. Dry Moist Soils are darker than in the dry condition & may feel cool. Sands and gravels tend to cohere. Μ W Wet Soils exude free water. Sands and gravels tend to cohere.

AS1726 - 1993

CONSIST	FENCY AND DE	NSITY	_	AS17	26 - 1993		
Symbol	Term	Undrained Shear Strength		Symbol	Term	Density Index %	SPT "N" #
VS	Very Soft	0 to 12 kPa		VL	Very Loose	Less than 15	0 to 4
S	Soft	12 to 25 kPa		L	Loose	15 to 35	4 to 10
F	Firm	25 to 50 kPa		MD	Medium Dense	35 to 65	10 to 30
St	Stiff	50 to 100 kPa		D	Dense	65 to 85	30 to 50
VSt	Very Stiff	100 to 200 kPa		VD	Very Dense	Above 85	Above 50
Н	Hard	Above 200 kPa					
the materia	al. elations are not st	, consistency and density ated in AS1726 – 1993, a		,			

Cardno Bowler Pty Ltd ABN: 71 128 806 735

Address: 3/5 Commercial Place, Earville Cairns QLD 4870 Telephone: 07 4032 3522

Email:

Website:

Facsimile: 07 4032 4156

paul.shaw@cardno.com.au www.cardno.com.au

QUALITY OF MATERIALS REPORT

Oliente	Calden Arres' (une li			E40/5	2/2005	. 1					_
Client:	Golder Associate	-					eport N					R/2225	-1					
Client Address:	216, Draper Stre						oject N		er:		519/F	9/212						
Project:	137632049 - Lot	126 Murphy S	Street			Lc	ot Numb	oer:		12	26							
Location:	Port Douglas					Re	eport D	ate:		08	08/04/2013							
Component:	Material Classific	cation				CI	ient Re	ferei	nce/s:	Jo	b # 1	37632	049					
Area Description:	Port Douglas					Pa	age Nui	mbei	r:	Pa	ige 1 o	2						
Test Procedures	AS1289.3.6.1, A	S1289.3.1.2, /	AS1289.3.2.1,	, AS12	89.3.4.1,	AS12	89.2.1.	1, AS	5 128	9.3.3.1								_
Sample Number	11519/S/6823									TF	P 1							
Sampling Method	Sampled By Clie	ent								0.	6m - ().9m						
Date Sampled	19/03/2013																	
Sampled By	Client																	
Date Tested	05/04/2013				Material		e		-	Mate								
Att. Drying Method	Oven Dried				Material				-	Mate								
Atterberg Preparation					Material	Desci	ription	Si	Ity CL	AY, D	ark G	ey						
AS Sieve (mm)	Specification Minimum	Percent Passing (%)	Specification Maximum			PAR	TICLE	SIZ	ZE D	[STR]	BUT	ION	GR/	٩PH				
37.5		100			00						-	_	-	-	-	-	_	-
19.0		100			90					/	-		-					-
9.5		98		89	80 🕂		_	-	/									-
4.75		95		(70		/											_
2.36		93		%) 1	1	/	/											
0.425		78		Sing	60	/												
0.075		50		Pas	50 🧹	-												-
				Percent Passing (%)	40]													-
				Per	30 🕂													_
				~	20													
				33	10													-
					0 1			tre					1			The second se		1
					0.075	0.150	0.300	0.425	0.600	1.18	2.36	4.7	6.7	9.5	13.2	19.0	26.5	37.5
					75	8	8	З					8		10	7	01.1	UT.
									-97628	Sieve	Size (mm)						
Test Result	Specification Minimum	Result	Specification Maximum		Test R	esult		S	Specific Minim			Resu	lt				icatio mum	
Liquid Limit (%)		41		0.075	5/0.425 R	atio						0.64	ŀ					
Plastic Limit (%)		33		PI x ().425 Rat	tio (%))				1	624.	0					
Plastic Index (%)		8		LS x	0.425 Ra	itio (%)				1	351.	0					
Linear Shrinkage (%)		4.5		Ι	r Shrinka	_	F											

Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards

Accredited for compliance with ISO/IEC 17025

Laboratory Accreditation Number: 11519

pl S_

Approved Signatory: Paul Shaw Form ID: W85Rep Rev 1

Cardno Bowler Pty Ltd ABN: 71 128 806 735

Address: 3/5 Commercial Place, Earville Cairns QLD 4870 Telephone: 07 4032 3522

Email:

Website:

Facsimile: 07 4032 4156

paul.shaw@cardno.com.au www.cardno.com.au

QUALITY OF MATERIALS REPORT

Client:	Golder Associate	es Pty Ltd				Re	port N	umb	er:	1	1519/	R/2228	5-1					
Client Address:	216, Draper Stre	et, Cairns				Pro	ject N	umb	er:	1	1519/	P/212						
Project:	137632049 - Lot	126 Murphy S	Street			Lot	Numb	ber:		12	26							
Location:	Port Douglas					Re	port Da	ate:		08	08/04/2013							
Component:	Material Classific	cation				Clie	ent Re	ferer	nce/s	: Jo	ob # 1	37632	049					
Area Description:	Port Douglas					Pa	ge Nur	nber	:	Pa	age 2 o	f 2						
Test Procedures	AS1289.3.6.1, A	S1289.3.1.2, /	AS1289.3.2.1,	, AS12	39.3.4.1,	AS128	9.2.1.	1, AS	6 128	9.3.3.1								
Sample Number	11519/S/6824									Т	P 1							
Sampling Method	Sampled By Clie	ent								1.	3m -	1.6m						
Date Sampled	19/03/2013																	
Sampled By	Client																	
Date Tested	05/04/2013				Material	Source	e	Ex	kisting	g Mate	rial							
Att. Drying Method	Oven Dried				Material	Туре		E>	kisting	g Mate	rial							
Atterberg Preparation	Dry Sieved				Material	Descri	ption	Si	Ity CL	AY, P	ale Bı	own						
AS Sieve (mm)	Specification Minimum	Percent Passing (%)	Specification Maximum			PART	ICLE	SIZ	ZE D	ISTR	IBUT	ION	GR.	APH				
37.5		100		1	00 <u> </u>					_		-		-	/	-	_	*
19.0		100			90					1	~							-
9.5		96		84	80 -				/									_
4.75		94		0	70		/											
2.36		92		%)	1	/	/											
0.425		76		sing	60	/												
0.075		50		Pas	50 루													-
				Percent Passing (%)	40													-
				Perc	30													
					1													
					20													-
				33	10													÷
					0 4							· · · · · · ·	mi			- min		т
					0.075	0.150	0,300	0.425	0.6	1.18	2.36	÷.	0.7	9.5	13.	19.1	26.5	37
					75	8	8	3							10	0	U I	Л
									AS	Sieve	Size (mm)						
Test Result	Specification Minimum	Result	Specification Maximum		Test R	esult		S	pecific Minim			Resu	lt				icatio mum	n
Liquid Limit (%)		31		0.075	/0.425 R	atio						0.6	6					_
Plastic Limit (%)		25		PIxO	.425 Rat	io (%)						456.	0					
Plastic Index (%)		6		LS x	0.425 Ra	tio (%)						304.	0					
Linear Shrinkage (%)		4.0		1	r Shrinka													-

Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards

Accredited for compliance with ISO/IEC 17025

Laboratory Accreditation Number: 11519

pl S_

Approved Signatory: Paul Shaw Form ID: W85Rep Rev 1

Cardno Bowler Pty Ltd ABN: 71 128 806 735

Address: 3/5 Commercial Place, Earville Cairns QLD 4870 Telephone: 07 4032 3522

Email:

Website:

Facsimile: 07 4032 4156

paul.shaw@cardno.com.au www.cardno.com.au

EMERSON CLASS NUMBER REPORT

Client:	Golder Ass	sociates Pty Ltd		Rep	ort Number:	11519/R/2226-1				
Client Address:	216, Drape	er Street, Cairns		Proje	ect Number:	11519/P/2	212			
Project:	137632049	9 - Lot 126 Murphy Street		Lot I	Number:	126				
Location:	Port Dougl	as		Rep	ort Date:	08/04/201	3			
Component:	Material Cl	assification		Clier	nt Reference/s:	Job # 137	632049			
Area Description:	Port Dougl	as		Page	e Number:	Page 1 of 1				
Test Procedures:		AS1289.3.8.1								
Sample Number		11519/S/6823	11519/S/6824							
ID / Client ID		P/O CQ3321	P/O CQ3321							
Lot Number		126	126							
Date / Time Sampled		19/03/2013	19/03/2013							
Material Source		Existing Material	Existing Material							
Material Type		Existing Material	Existing Material							
Water Type		Distilled	Distilled							
Water Temperature (C	C°)	29	29							
		TP 1	TP 1							
		0.6m - 0.9m	1.3m - 1.6m							
Soil Description		Silty CLAY, Dark grey	Silty CLAY, Pale brow	'n						
Con Description		Gity OLAT, Dark grey								
Emerson Class Num	ber	8	5							

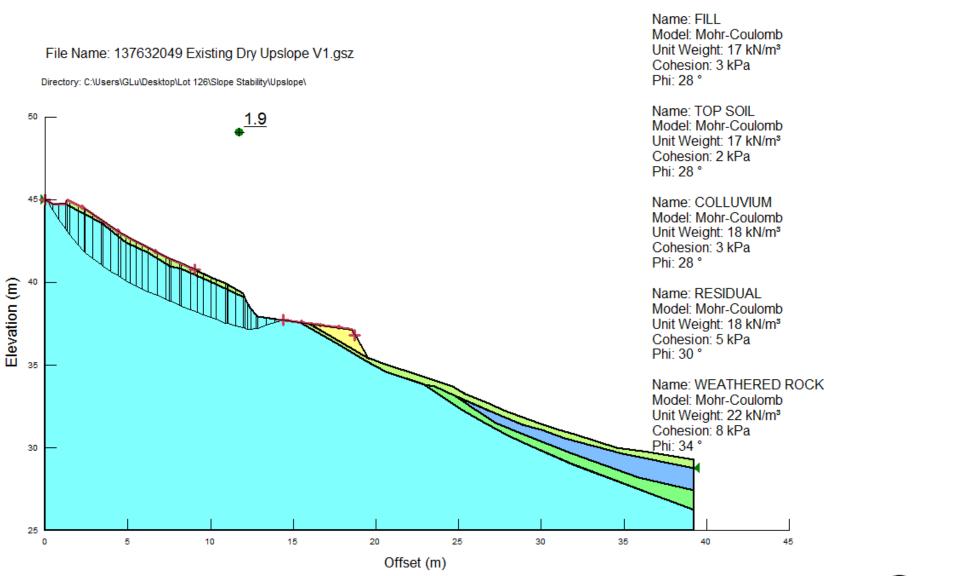
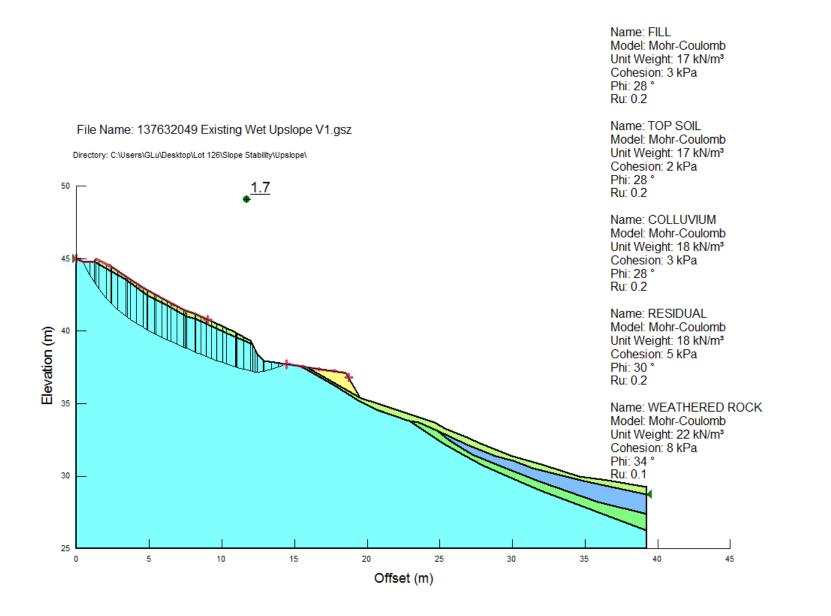
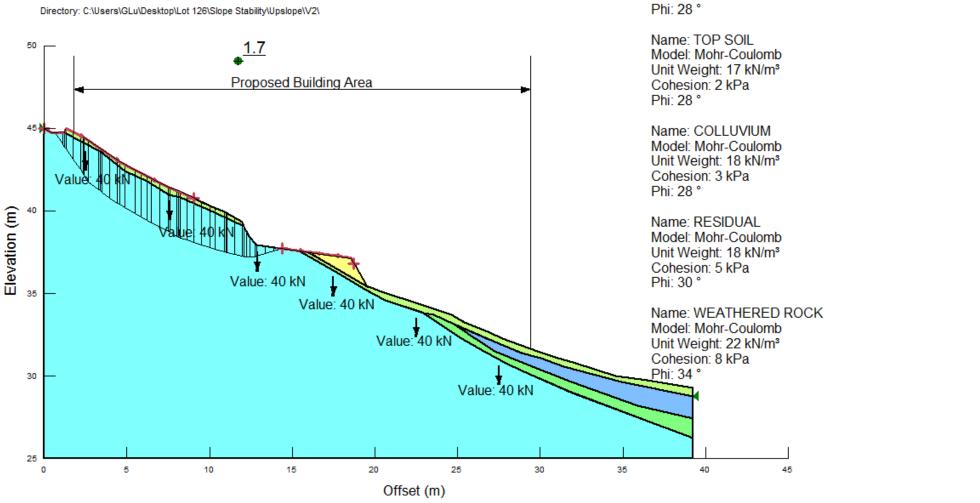

 Remarks

 Image: Second state sta

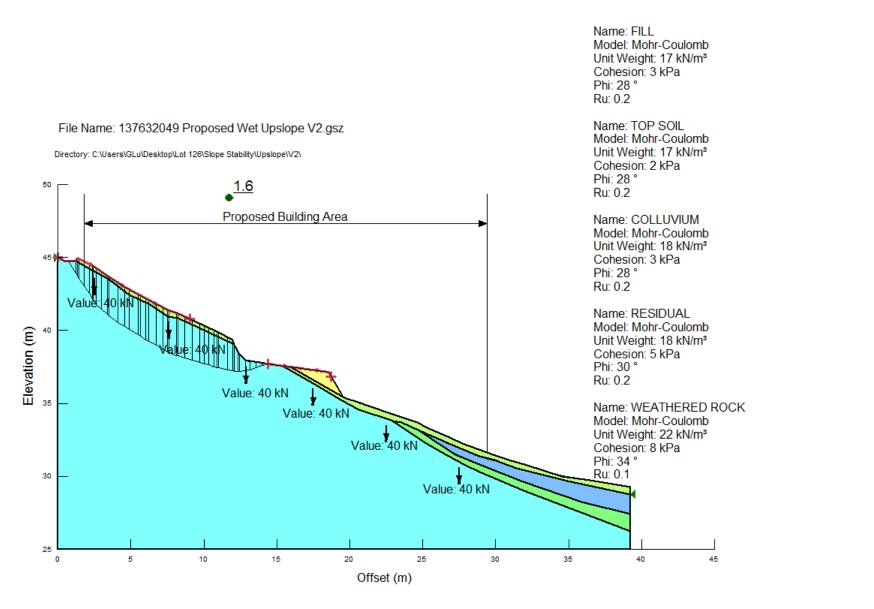

APPENDIX C Results of Stability Analysis

Project No.:	137632049	Computed In: S	SLOPE/W	RESULTS OF STABILITY ANALYSES – SECTION A
Computed By:	GZL	Checked By:	JD	LOT 126, MURPHY STREET, PORT DOUGLAS
Date:	04-04-2013	Date:	04-04-2013	EXISTING UPSLOPE PROFILE - DRY CONDITION

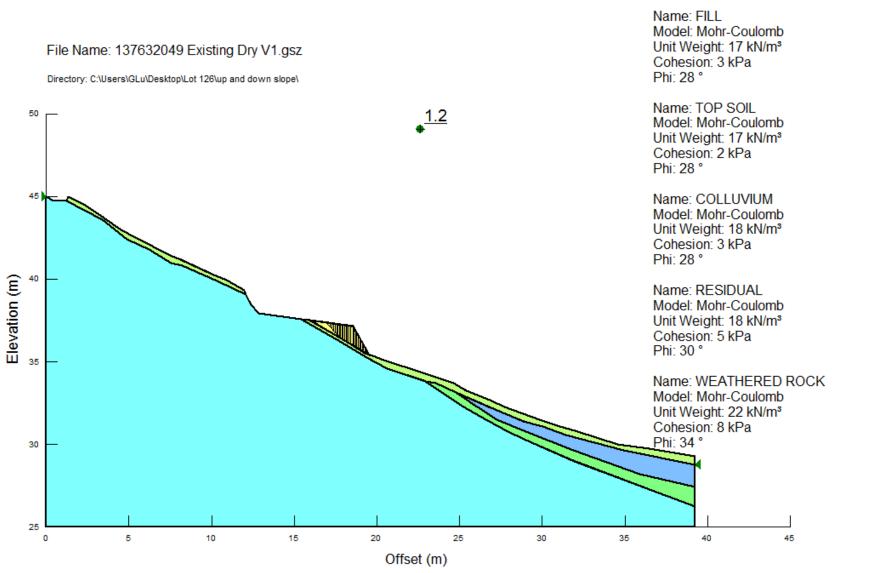


Project No.:	137632049	Computed In: S	LOPE/W	RESULTS OF STABILITY ANALYSES - SECTION A
Computed By:	GZL	Checked By:	JD	LOT 126, MURPHY STREET, PORT DOUGLAS
Date:	04-04-2013	Date:	04-04-2013	EXISTING UPSLOPE PROFILE - WET CONDITION

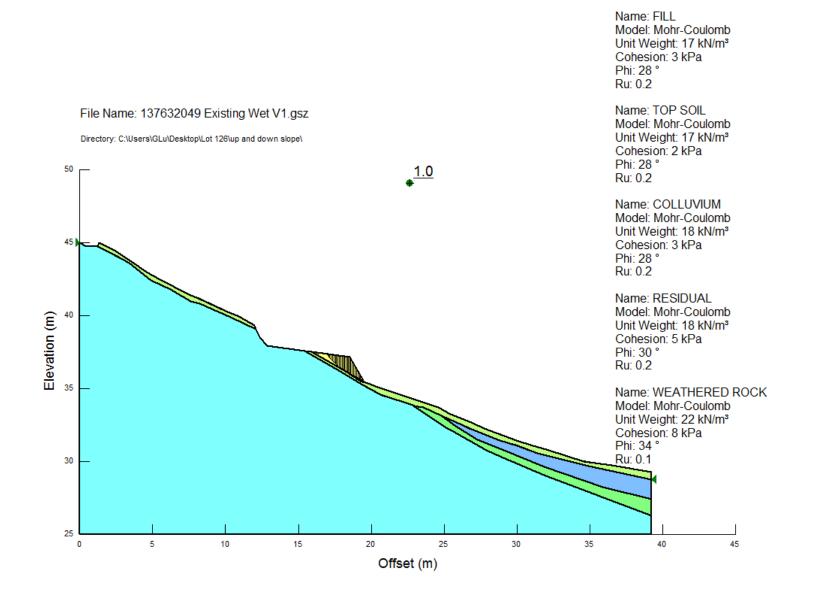
Directory: C:\Users\GLu\Desktop\Lot 126\Slope Stability\Upslope\V2\



Project No.:	137632049	Computed In: S	SLOPE/W	RESULTS OF STABILITY ANALYSES – SECTION A
Computed By:	GZL	Checked By:	JD	LOT 126, MURPHY STREET, PORT DOUGLAS
Date:	04-04-2013	Date:	04-04-2013	PROPOSED UPSLOPE PROFILE - DRY CONDITION

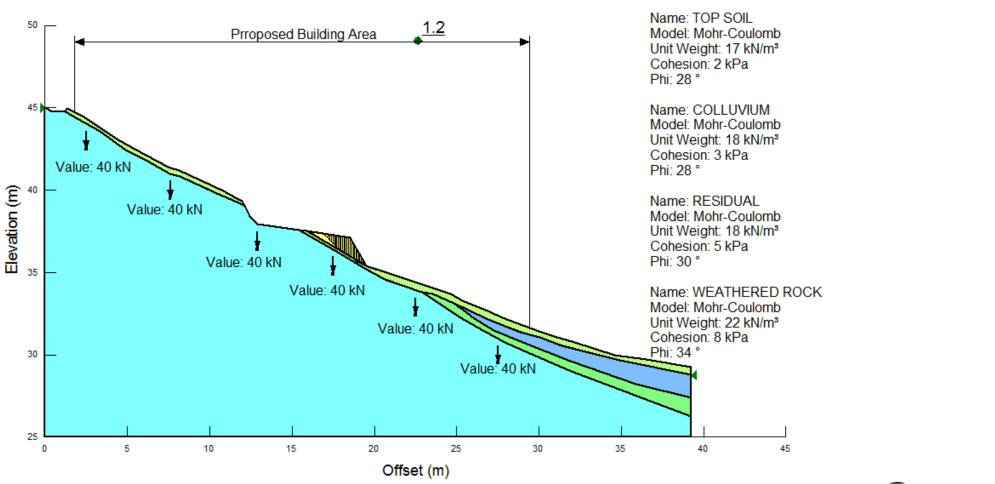

Name: FILL

Model: Mohr-Coulomb Unit Weight: 17 kN/m³



Project No.:	137632049	Computed In: S	SLOPE/W	RESULTS OF STABILITY ANALYSES – SECTION A
Computed By:	GZL	Checked By:	JD	LOT 126, MURPHY STREET, PORT DOUGLAS
Date:	04-04-2013	Date:	04-04-2013	PROPOSED UPSLOPE PROFILE - WET CONDITION

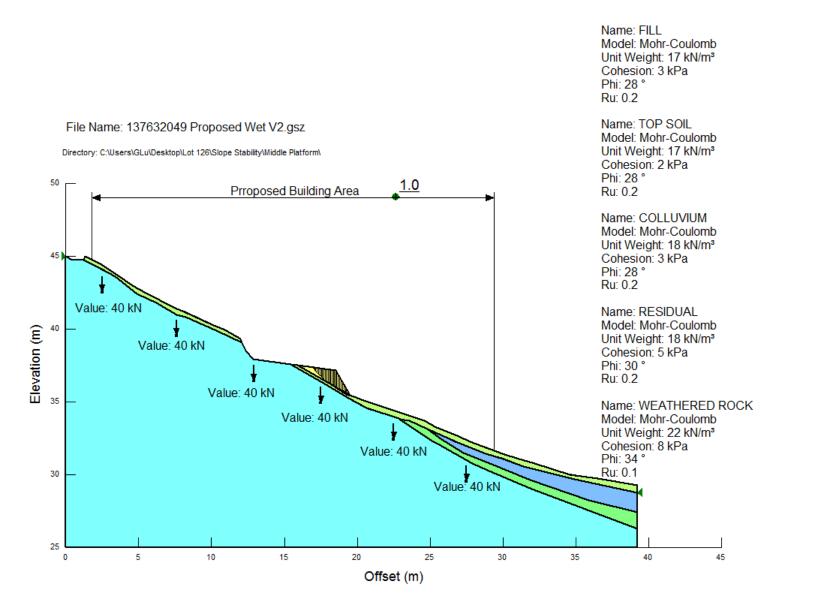
Project No.:	137632049	Computed In: S	BLOPE/W	RESULTS OF STABILITY ANALYSES – SECTION A
Computed By:	GZL	Checked By:	JD	LOT 126, MURPHY STREET, PORT DOUGLAS
Date:	04-04-2013	Date:	04-04-2013	EXISTING MIDDLE PLATFORM - DRY CONDITION



Project No.:	137632049	Computed In: S	LOPE/W	RESULTS OF STABILITY ANALYSES – SECTION A
Computed By:	GZL	Checked By:	JD	LOT 126, MURPHY STREET, PORT DOUGLAS
Date:	04-04-2013	Date:	04-04-2013	EXISTING MIDDLE PLATFORM - WET CONDITION

File Name: 137632049 Proposed Dry V2.gsz

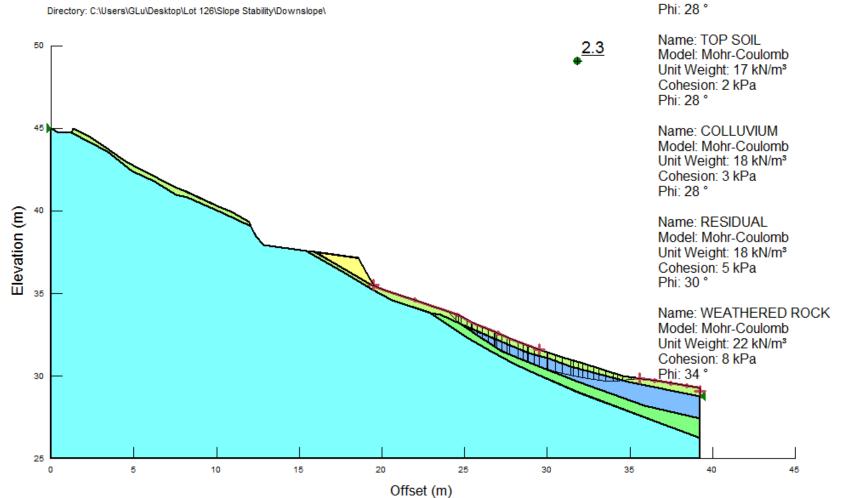
Directory: C:\Users\GLu\Desktop\Lot 126\Slope Stability\Middle Platform\



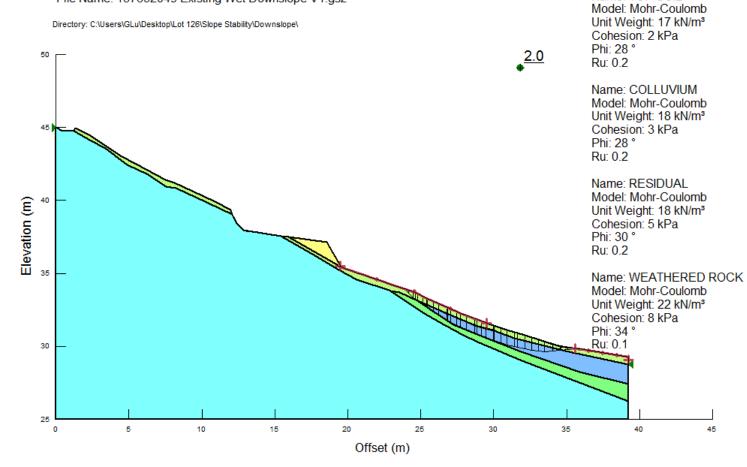
Project No.:	137632049	Computed In: S	LOPE/W	RESULTS OF STABILITY ANALYSES - SECTION A
Computed By:	GZL	Checked By:	JD	LOT 126, MURPHY STREET, PORT DOUGLAS
Date:	04-04-2013	Date:	04-04-2013	PROPOSED MIDDLE PLATFORM - DRY CONDITION

Name: FILL

Phi: 28 °


Model: Mohr-Coulomb Unit Weight: 17 kN/m³

Project No.:	137632049	Computed In: SL	_OPE/W	RESULTS OF STABILITY ANALYSES – SECTION A
Computed By:	GZL	Checked By:	JD	LOT 126, MURPHY STREET, PORT DOUGLAS
Date:	04-04-2013	Date:	04-04-2013	PROPOSED MIDDLE PLATFORM - WET CONDITION

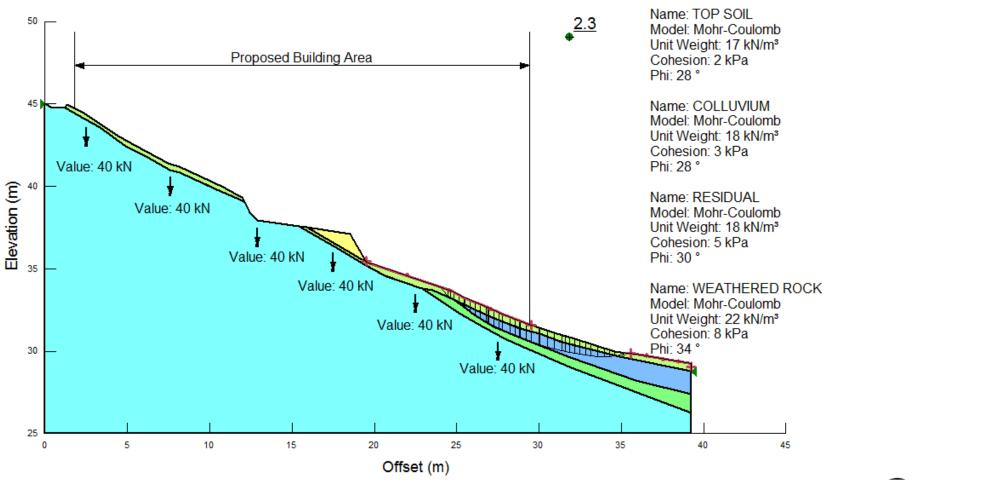


Project No.:	137632049	Computed In: S	COPE/W	RESULTS OF STABILITY ANALYSES - SECTION A
Computed By:	GZL	Checked By:	JD	LOT 126, MURPHY STREET, PORT DOUGLAS
Date:	04-04-2013	Date:	04-04-2013	EXISTING DOWNSLOPE PROFILE - DRY CONDITION

Name: FILL

Model: Mohr-Coulomb Unit Weight: 17 kN/m³

Project No.:	137632049	Computed In: S	LOPE/W	RESULTS OF STABILITY ANALYSES – SECTION A
Computed By:	GZL	Checked By:	JD	LOT 126, MURPHY STREET, PORT DOUGLAS
Date:	04-04-2013	Date:	04-04-2013	EXISTING DOWNSLOPE PROFILE - WET CONDITION

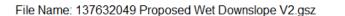

Name: FILL

Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 3 kPa Phi: 28 ° Ru: 0.2

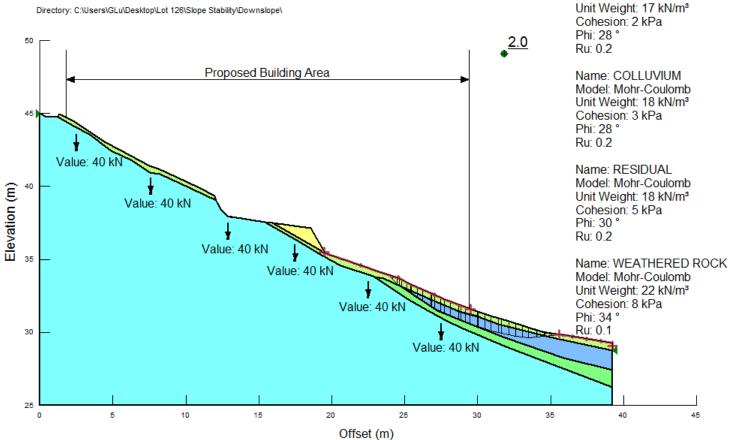
Name: TOP SOIL

File Name: 137632049 Proposed Dry Downslope V2.gsz

Directory: C:\Users\GLu\Desktop\Lot 126\Slope Stability\Downslope\



Project No.:	137632049	Computed In: S	LOPE/W	RESULTS OF STABILITY ANALYSES – SECTION A
Computed By:	GZL	Checked By:	JD	LOT 126, MURPHY STREET, PORT DOUGLAS
Date:	04-04-2013	Date:	04-04-2013	PROPOSED DOWNSLOPE PROFILE - DRY CONDITION


Name: FILL

Phi: 28 °

Model: Mohr-Coulomb Unit Weight: 17 kN/m³

Directory: C:\Users\GLu\Desktop\Lot 126\Slope Stability\Downslope\

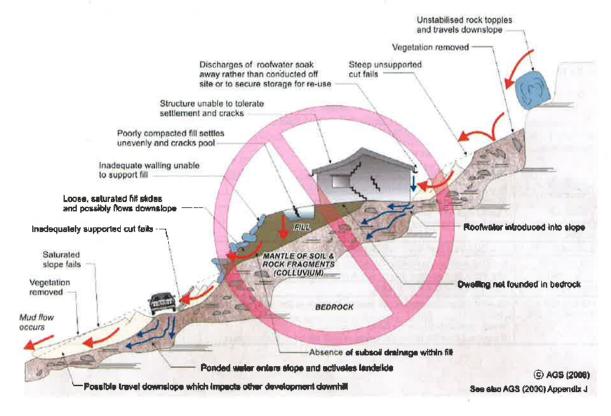
Project No.:	137632049	Computed In: S	COPE/W	RESULTS OF STABILITY ANALYSES – SECTION A
Computed By:	GZL	Checked By:	JD	LOT 126, MURPHY STREET, PORT DOUGLAS
Date:	04-04-2013	Date:	04-04-2013	PROPOSED DOWNSLOPE PROFILE - WET CONDITION

Name: FILL

Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 3 kPa Phi: 28 ° Ru: 0.2

Name: TOP SOIL

Model: Mohr-Coulomb


APPENDIX D Good Hillside Practice (AGS)

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

EXAMPLES OF GOOD HILLSIDE PRACTICE Vegetation retained Surface water Interception drainage Watertight, adequately sited and founded roof water storage tanks (with due regard for Impact of potential leakage) Flexible structure Roof water piped off site or stored -On-site detention tanks, watertight and adequately founded. Potential leakage managed by sub-soil drains MANTLE OF SCH AND ROCK FRAGMENTS (COLLUVIUM) Vegetation relained OFF STREET PARKING Pler footings into rock Subsoli drainage may be required in slope Cutting and filling minimised in development ROADWA Sewage effluent pumped out or connected to sewer. Tanks adequately founded and watertight. Potential leakage managed by sub-soil drains BEDROCK Engineered retaining walls with both surface and subsurface drainage (constructed before dweiling) (C) AGS (2006)

EXAMPLES OF POOR HILLSIDE PRACTICE

APPENDIX E

Limitations

LIMITATIONS

This Document has been provided by Go Ider Associat es Pty Ltd ("Golder") subject to the following limitations:

This Docu ment has been prepared for the particular purpose ou tlined in Golder's proposal and no responsibility is accepted f or the use of thi s Document, in whole or in part, in other contexts or for any other purpose.

The scope and the per iod of Gold er's Service's are as de scribed in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible cond itions or circu mstances t hat may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addre ssed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were u ndetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining t o the site which ha ve not been revealed by th e investigation and which have not t herefore be en taken in to account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of t ime affects the information and assessment provided in this Docu ment. Golder's opin ions are based upon information that existed at the time of the pro duction of the Docume nt. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published source s and the investigation describ ed. No wa rranty is included, e ither express or implie d, that the actual co nditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have bee n used, it has been assumed that the information is correct un less otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subcon sultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility what soever for the contents of this Document will be accepted to any person other than the Client. Any use which a third part y makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for dama ges, if a ny, suffered by any third party as a result of decisions made or actions based on this Document.

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa
Asia
Australasia
Europe
North America
South America

+ 27 11 254 4800 + 86 21 6258 5522 + 61 3 8862 3500 + 356 21 42 30 20 + 1 800 275 3281 + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Pty Ltd 216 Draper Street Cairns, Queensland 4870 Australia T: +61 7 4054 8200

